Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
2.
Pharm Dev Technol ; 28(6): 520-534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37213179

RESUMO

Lamotrigine (LTG) is a second-generation antiepileptic drug that belongs to Biopharmaceutics Classification System (BCS) class II. LTG has a low probability of crossing the BBB if administered orally. This study was designed to fabricate LTG cubosomal dispersion that is further loaded in a thermosensitive in situ gel to increase nasal residence time and enhance drug absorption across the nasal mucosal membrane. LTG-loaded cubosomes exhibited an entrapment efficiency ranging from 24.83% to 60.13%, a particle size ranging from 116.2 to 197.6 nm, and a zeta potential ≤-25.5 mV. The selected LTG-loaded cubosomal formulation was loaded in a thermosensitive in situ gel (cubogel) employing different concentrations of poloxamer 407. In vitro release study revealed sustained drug release from cubosomal and cubogel compared with free drug suspension. In vivo studies revealed enhanced antiepileptic efficacy of LTG cubogel and LTG cubosomes compared with free drug in rats with pilocarpine-induced epilepsy by stimulating the release of gamma-aminobutyric acid (GABA), total antioxidant capacity (TAC), and serotonin and by inhibiting the release of Ca2+, dopamine, acetylcholine (Ach), C-reactive protein (CRP), and glial fibrillary acidic protein (GFAP). LTG cubogel exhibited superior activity over LTG cubosomes. These findings reveal that the developed cubosomal thermosensitive in situ gel can enhance the antiepileptic efficacy of LTG via the intranasal route.


Assuntos
Anticonvulsivantes , Portadores de Fármacos , Ratos , Animais , Administração Intranasal , Lamotrigina/metabolismo , Mucosa Nasal/metabolismo
3.
Drug Deliv Transl Res ; 13(2): 580-592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35927549

RESUMO

Tizanidine hydrochloride (TZN) is one of the most effective centrally acting skeletal muscle relaxants. The objective of this study is to prepare TZN-loaded proniosomes (TZN-PN) aiming at enhanced oral delivery and therapeutic activity. TZN-PN were prepared by coacervation phase separation method. The developed vesicles were characterized via entrapment efficiency percentage (EE%), vesicular size (VS), and zeta potential (ZP). A 23 full factorial design was employed to attain an optimized TZN-PN formulation. The optimized TZN-PN were further characterized via in vitro release study and transmission electron microscopy (TEM). In vivo rotarod test was employed for determination of the muscle relaxant activities of rats and levels of GABA and EAAT2 were detected. The developed TZN-PN exhibited relatively high EE% (75.78-85.45%), a VS ranging between (348-559 nm), and a ZP (-26.47 to -59.64). In vitro release profiles revealed sustained release of TZN from the optimized TZN-PN, compared to free drug up to 24 h. In vivo rotarod study revealed that the elevation in coordination was in the following order: normal control < free TZN < market product < TZN-PN (F6). Moreover, the optimized TZN-PN exhibited significant elevated coordination activity by 39% and 26% compared to control group and market product group, respectively. This was accompanied with an elevation in both GABA and EAAT2 serum levels. Thus, it could be concluded that encapsulation of TZN in the provesicular nanosystem proniosomes has enhanced the anti-nociceptive effect of the drug and consequently its therapeutic activity.


Assuntos
Clonidina , Ácido gama-Aminobutírico , Ratos , Animais , Tamanho da Partícula , Lipossomos
4.
Pharmaceutics ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678648

RESUMO

Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity.

5.
J Pharm Sci ; 111(2): 458-468, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547306

RESUMO

Terconazole (TCZ) is a broad-spectrum antifungal triazole that is particularly active against Candida species, but its poor water solubility hinders its ocular absorption and restricts its application. This study aims to fabricate TCZ-loaded cationic polymeric nanoparticles to enhance the ocular delivery and antimycotic activity of terconazole. TCZ-loaded nanoparticles were developed by nanoprecipitation method employing Eudragit RLPO®. They were characterized by entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), morphology, Fourier transform infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRPD). In-vitro antimycotic activity was evaluated by measuring zone of inhibition (ZI), minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). The developed nanoparticles were spherical with moderate to high EE% (44.03-71.14%), a nanometric PS (49.41-78.72 nm), and a positively charged ZP (≥ +21.47). In-vitro release studies revealed sustained release of drug up to 24 h. FT-IR of TCZ-loaded nanoparticles revealed distinctive peaks for Eudragit RLPO® and Poloxamer-188, with disappearance of the TCZ characteristic peaks. XRPD revealed the amorphous state of TCZ within the polymer matrix. Mucoadhesive studies proved the mucoadhesive property of the developed TCZ nanoparticles. In-vitro antimycotic studies, assessed by ZI, MIC and MFC, revealed enhanced antimycotic activity of TCZ-loaded nanoparticles against Candida albicans, relative to plain TCZ. No irritation or abnormal changes to the rabbits' eyes for plain and medicated polymeric nanoparticles were found by the in-vivo Draize test. These findings reveal that the cationic polymeric nanoparticles can be regarded as a potential drug delivery system for enhancing the ocular antimycotic activity of TCZ.


Assuntos
Nanopartículas , Animais , Nanopartículas/química , Polímeros , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis
6.
J Pharm Sci ; 110(9): 3208-3220, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34015278

RESUMO

The present study aims to formulate all-trans retinoic acid (ATRA) loaded chitosan/tripolyphosphate lipid hybrid nanoparticles (CTLHNs) for enhancing its solubility and oral delivery. This is to improve ATRA therapeutic effect on diabetic nephropathy (DN). CTLHNs were prepared by o/w homogenization, employing stearic acid, to form lipid nanoparticles coated with chitosan that is stabilized against acidic pH via sodium tripolyphosphate crosslinking. Chitosan coated (F7) and naked lipid nanoparticles (F6) were also prepared for comparison with CTLHNs. In vitro characterization for the prepared formulations was performed comprising entrapment efficiency, particle size, zeta potential, transmission electron microscopy, FT-IR spectroscopy and x-ray diffraction. Stability of chitosan coat in GI fluid revealed that CTLHNs were more stable than F7. In vitro release indicated an enhanced release of ATRA from the developed formulations. In vitro mucoadhesion study proved a notable mucoadhesive property for CTLHNs. In DN rat model, serum levels of creatinine and urea were elevated, over expression of tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) were observed. In addition, adenosine monophosphate activated protein kinase (AMPK) and liver kinase B1 (LKB1) expressions were decreased in DN rats. Treatment with free ATRA and the selected formulations led to a significant amelioration of DN by reducing of creatinine, urea, TNF-α, ICAM-1, GM-CSF, VEGF levels as well as elevating AMPK and LKB1 levels. The order of activity was: CTLHNs > F7 > F6 > free ATRA, as proved by histopathological examination.


Assuntos
Quitosana , Diabetes Mellitus , Nefropatias Diabéticas , Nanopartículas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Portadores de Fármacos , Lipídeos , Tamanho da Partícula , Polifosfatos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Tretinoína , Fator A de Crescimento do Endotélio Vascular
7.
J Pharm Sci ; 110(7): 2677-2686, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33600809

RESUMO

Coenzyme Q10 (CoQ10) acts as an antioxidant that protects the cells by preventing lipid peroxidation. Owing to its low solubility, CoQ10 has shown poor delivery properties and poor bioavailability. The aim of this study is to develop CoQ10 loaded cubosomes in order to enhance its oral delivery and hepatoprotective activity. Cubosomes are cubic nanostructured systems resulting from the colloidal dispersion of cubic liquid crystalline structure in water. CoQ10 loaded cubosomes were prepared using poloxamer 407 and glyceryl monooleate at three weight ratios (1:2.5, 1:5 and 1:7.5) and were further characterized. They were investigated for their hepatoprotective effect in thioacetamide (TAA) induced hepatotoxicity in Wistar rats. The developed CoQ10 cubosomes exhibited moderate to high entrapment efficiency percentages (44.69-75.96%), nanometric dimensions (132.4-223.2 nm), and negatively charged zeta potential values (<-21.3). In-vitro release profiles showed a sustained release of CoQ10 from the developed cubosomes up to 48 h. In-vivo study revealed an improved hepatoprotective effect of CoQ10 cubosomes via reducing liver enzymes, nitric oxide and malondialdehyde as well as elevating phosphoinositide 3-kinase, catalase and glutathione peroxidase, compared to plain drug. These results were in good agreement with histopathological investigations. Consequently, the developed cubosomes showed a potential effect in enhancing the hepatoprotective activity of CoQ10.


Assuntos
Sistemas de Liberação de Medicamentos , Fosfatidilinositol 3-Quinases , Animais , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Ubiquinona/análogos & derivados
8.
Curr Drug Targets ; 20(10): 995-1007, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848199

RESUMO

BACKGROUND: Medications currently available for the management of diabetes mellitus are inconvenient and have some limitations. Thus, investigations for novel approaches are needed to deliver and target antidiabetics safely to the site of action. OBJECTIVE: The present review emphasizes the limitations of conventional antidiabetics and provides the recent progresses of nanotechnology in the treatment of diabetes mellitus with a special highlight on the novel nanocarriers methodologies employed as antidiabetic drug delivery systems. METHOD: The potential nanocarriers employed for the treatment of diabetes comprise liposomes, niosomes, self-nanoemulsifying drug delivery systems, polymeric nanoparticles, gold nanoparticles, dendrimers and micelles. Herbal nanomedicine has also emerged to be a promising way for adequate delivery of herbal compounds. Other nanotechnology approaches involve the usage of oral insulin, inhalable insulin, artificial pancreas, and nanopump. RESULTS: Nanocarriers have proved to lead a successful delivery of antidiabetic medications, aiming at drug targeting for enhanced efficacy and safety. CONCLUSION: These innovative generations of drug delivery systems have important benefits over conventionally existing ones. The future of nanotechnology in the management of diabetes is still open with several prospects and will be of pronounced significance.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Portadores de Fármacos/classificação , Humanos , Hipoglicemiantes/química , Nanotecnologia
9.
Curr Drug Deliv ; 15(1): 122-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28240177

RESUMO

BACKGROUND: The objective of this study was to investigate the potential of niosomal gels as a transdermal delivery system to improve the permeation and anti-inflammatory activity of Lornoxicam (LX). METHODS: LX niosomes were prepared by thin film hydration technique and were characterized using Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), Particle Size analysis and Zeta potential determination. LX niosomal gel/LX loaded gel were prepared using Carbopol 934 (2%) and were evaluated for their physical appearance, pH and rheological behaviour. Ex vivo skin permeation test was performed on dorsal region of wistar rats. In vivo studies comprised skin irritation test and anti-inflammatory activity study. RESULTS: The prepared LX niosomes exhibited an entrapment efficiency of more than 66% and a particle size diameter ranging from 295 nm to 1298 nm, with negatively charged zeta potential. TEM electron micrographs revealed spherical shaped vesicles. The release pattern of drug was analyzed and found to follow Higuchi's model. Rheology studies revealed the pseudoplastic behaviour of LX niosomal gel. They exhibited a one and half fold increase in drug permeated through rat skin, when compared to free drug. Skin irritation test proved the non-irritancy of LX niosomal gels, when applied to dorsal region of Wistar rats. Percentage edema inhibition of LX niosomes was significantly higher (P<0.05) than that of free LX group showing an enhanced anti-inflammatory activity of LX niosomes. CONCLUSION: These findings revealed that LX loaded niosomal gels could be a potential transdermal drug delivery system.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Sistemas de Liberação de Medicamentos , Lipossomos/química , Piroxicam/análogos & derivados , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/patologia , Géis/química , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Piroxicam/administração & dosagem , Piroxicam/química , Piroxicam/farmacologia , Ratos , Ratos Wistar , Reologia , Pele/patologia
10.
Drug Dev Ind Pharm ; 43(12): 2043-2054, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28756693

RESUMO

The main objective of the present work was to formulate, characterize, and evaluate silymarin (SM)-loaded bilosomes, compared to conventional liposomes, aiming at increasing the hepatoprotective activity of the drug. SM-loaded bilosomes were prepared by thin film hydration technique employing soybean phosphatidyl choline (SPC) and different bile salts. After being subjected to different methods of characterization, SM-loaded bilosomes were investigated for their hepatoprotective activity, in CCl4 hepatointoxicated rat model. The developed SM dispersions exhibited an entrapment efficiency ranging from 21.80 ± 2.01 to 84.54 ± 2.51% and a particle size diameter in the nanometric dimensions (413 ± 96.9 to 686.9 ± 62.38 nm), with a negative zeta potential values (<-45 mV). In vitro release study revealed a lower cumulative amount of drug released from the developed formulae, compared to free drug. Ex vivo intestinal uptake study, performed using confocal laser scanning calorimetry, revealed the superiority of bilosomal uptake compared to that of liposomes. In vivo studies revealed an enhanced hepatoprotective effect of SM-loaded bilosomes/liposomes compared to free drug. These results were in good correlation with histopathological examination. These findings support the potential use of bilosomes for improving the hepatoprotective activity of SM via oral administration.


Assuntos
Ácidos e Sais Biliares/química , Mucosa Intestinal/metabolismo , Lipossomos/química , Silimarina/farmacologia , Administração Oral , Animais , Química Farmacêutica , Intestinos/química , Ratos , Silimarina/administração & dosagem , Silimarina/química
11.
Drug Dev Ind Pharm ; 43(8): 1254-1264, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28330377

RESUMO

This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8 ± 18.69 to 797.7 ± 12.45 nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC0-48 hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Lipossomos/farmacologia , Compostos de Sulfonilureia/farmacologia , Tensoativos/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Lipossomos/química , Ratos , Compostos de Sulfonilureia/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...